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ABSTRACT

Recent work by Peng ("Nonlinear Multiaxial Finite Deformation
Investigation of Solid Propellants™, S.T.T. Peng, AFRDL. TR-85-036)
has shown that the use of separable symmetric functions of the principal
stretches can adequately describe the response of certain propellant
materials and, further, that a data reduction scheme given by him
gives a convenient way of obtaining the values of the functions from
experimental data. Based on Peng's representation of the energy, a
computational scheme has been developed that allows finite element

analysis of boundary value problems of arbitrary shape and loading.

The computational procedure has been implemental in a three-dimen-
sional finite element code, TEXLESP-S, which is documented in this

report.
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1.0 INTRODUCTION

The finite element analysis of large elastic strain
problems has been reported by many researchers, see for
example, Oden [1], Cescotto and Fonder [2], Aly [3],
Miller [4] Hubbitt et al. [5] and Becker et al. [6]. The
constitutive relations employed in all of these works is a
strain energy density which is taken as a function of the
principal invariants of strain (technically, of the left
Cauchy-~Green deformation tensor ). No doubt the fondness
exhibited toward this approach dates from the early work
of Rivlin, in which it was shown that such forms of the
energy function are acceptable for any isotropic hyper-
elastic material. 1In fact, most published reports of
hyperelastic solutions employ a very simple form of the
energy that was introduced by Mooney and has come to be
known as the Mooney=-Rivlin energy function. It is well
known that this form of the energy describes the behavior
of real rubber over only a very limitted range of deforma-
tions, but, due to its simple form (only two constants are
required to specify the Mooney material) or, perhaps, due
to the association with Rivlins fundamental work in rubber
elasticity, the Mooney-Rivlin function continues to be
used extensively. It is worth noting that the simplicity
of form, while extremely valuable in the construction of
analytical solutions to boundary value problems, is of but

minimal significance in finite element work.



Viewed in the large, the stress analysis of any
problem involves not only the finite element calculations
used to satisfy equilibrium and boundary conditions but
also the determination of a constitutive relation appli-
cable to the material.

The characterization problem includes determining,
from experimentally obtained data, both the mathematical
form of the energy function and the value of the parame-
ters ("material constants") embedded in these forms.

While theoretically convenient, the strain invariants
are far from ideal choices of constitutive variables when
viewed from the point of view of experimental determina-
tion of the constitutive form. Literally dozens of forms
of the energy function, with strain invariants as argu-
ments, have been proposed in the literature. The ration-
ales for these are empirical rather than physical -
material science considerations offer no guide to the
form. The most common form is a polynomial in the strain
invariants with the coefficients determined by least
squares fitting to whatever data are available. Since any
reasonable function can be approximated by a polynomial,
so the argument goes, this simplistic approach should, in
principle, be adequate. Unfortunately, polynomial inter-
polation invariably produces oscillatory behavior in the
function and, especially, in its éerivatives. Since it is

the first and second Jderivatives of the energy that are
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required in any computational procedure, the high order
polynomials required to give adequate fits to real material
behavior over large ranges of deformation do not work well
in practice.

The use of principal stretches as arguments of the
energy function has been proposed by, for example Valanis
and Landell (7], Ogden [8] and Peng [9]. When the
stretches are chosen as constitutive variables, an assump;
tion can be made that reduces the difficulty of the char-
acterization problem. Using the assumption of separabil-
ity, Ogden, for example, has been able to fit a wide range
of rubber deformations using fairly simple mathematical
forms of the energy function. Ogden's characterization,
however, requires the choice of some parameters on an
intuitive basis.

The approach to material characterization taken here
differs from previously reported approaches in that no
mathematical form of the energy function is postulated.
Since only the values of the derivatives of the energy and
not form of the function, are needed for computation, we
avoid the restrictions inherent in the choice of a
particular mathematical form. Working directly with
interpolated experimental data we calculate points on a
curve that defines the material response. These points
are supplied as input data to the finite element analysis
code. Our procedure, thereby, provides the most direct

and straight forward use of experimental data for the
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solution of boundary value problems. The details of this
procedure are given in Section 2.

The finite element code, TEXLESP-S developed in the
present effort utilizes components of the code TEXGAP3D,
which is described in reference [10). The modelling
capability is identical to that of TEXGAP3D and almost all
of the data are identical. The hyperelastic calculations
are based on proceedures developed by Aly in reference
{3], but modified to allow the use of the separable energy
function of principal stretches. The use of TEXLESP-S is

described in Section 3.

2.0 THEORETICAL DEVELOPMENT

The theory of large elastic deformations was essen-
tially set forth by Rivlin in the late 1940's. Notations
have changed and the use of finite element techniques has
shifted the emphasis but the theoretical foundations are
unchanged. The major change in emphasis is the use of
variational principles (principle of virtual work, for
example) to satisfy equilibrium requirements and the
accompanying use of Lagrange multiplier methods to accom-
modate the incompressibility condition.

In the following sections we review the notation and
description of deformation, Section 2.1; the constitutive

relations on which this work is based, Section 2.2; the



variational formulation of the boundary value problems,
Section 2.3 and the finite element implementation of the

theory, Section 2.4.

2.1 Kinematics of Deformation

Let g denote the position of a material particle
in the undeformed (and unstressed) reference configuration
of a body whose deformation is to be studied. At some
later time, t , as the body is deformed by applied loads,
the particle originally at X moves to a new position
X . The problem to be solved is the determination for a
fixed time, the value of X for every particle, § , in
the body consistent with the requirement that each part of
the body be in equilibrium with applied loads. We con-
sider only slow variation in the loads, so that inertia is
not important, and elastic behavior, so that the history
of deformation is not important. Thus, time appears in
all equations only as a parameter identifying which set of
loads and deformations are being studied. It will be
convenient to replace time, then, with another parameter,
p , which we shall call the load factor. The load factor
will vary, under control of the analyst, from a value of
zero in the reference configuration through whatever
positive values are of interest. When the load factor has
a value of unity, the loads acting on the body will have

what we shall call their nominal values. We note that
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since all loads are scaled by the same parameter we are
restricting attention to proportional loading.

The motion of the body is described mathematically by
the function (unknown, a priori)

X = x(>~<. p) (1)

-

from which we shall generally omit the dependence on load
factor o .

In an elastic material, the stress at a particle ¥
depends only on the difference between the shape of an
infinitesimally small portion of the body around g and
the shape of this same portion in the reference configura-
tion. 1If d§ denotes a line element in the reference
configuration (at particle g) and d§ denotes the de-

formed configuration of this element, then the relation

between these is given by

ds =

d§ (2)

¢

where the deformation gradient F is calculated as

F = (3)

Q Q2
t><|'><

The determinant of the deformation gradient, F ,
plays an important role in the kinematics of deformation.
Direct calculation shows that the ratio of the volume

contained in a deformed material region dv to the volume



—— s i

of the same material in the reference configuration dv

is given by

d
a% = det|g| = J (4)

This determinant, denoted by J , is often callled the
Jacobian determinant of the deformation or, simply, the
Jacobian. Clearly, for all physically acceptable defor-
mations J > 0 and for isochoric (i.e., volume preserv-
ing) deformations as must occur in incompressible mater-
ials, g =1 .

Since the change in shape of the infinitesimal part
of the body surrounding the particle g is completely
determined by the knowledge of the changes of all the line
segments emanating from the particle, it is clear that F
contains all of the information required. 1In fact, f'
contains not only the description of changes in shape of
the neighborhood of § , but also changes in its orienta-
tion, since a rigid body rotation of the neighborhood
would change each d§ into a d§ with the same length
but a different direction. A useful theorem of linear
algebra (the polar decomposition theorem) assures us that
g can be factored in such a way that the rigid body
rotation and stretching parts of the deformation are

separate, Thus,

F = RU (5)
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Since rigid body rotation does not affect the stress,
we are interested in the stretch tensor U . Although the

polar decomposition theorem assures the existence of U ,

it does not offer a convenient way to determine it. But

since R represents a rigid rotation, r~1 = gT , the

~

tensor C , defined by (6), depends only on the stretches.

c = FIr = uTrTry = vty = ©? (6)

Clearly, C is a useful measure of the stress producing

-~

deformation of the neighborhood of the material surround-

ing the particle X . Another measure of this deformation

(not used here) is the Green strain tensor, defined as

=1 -

The tensor C 1is symmetric, and, therefore, has real
principal values. If these values are denoted, say, LT

i=1, 2, 3, then the characteristic equation of C is

3 2 2 2

2

In (7), I I and J are the three principal invari-

1’ —2
ants of g . The third of these is written here as
I3 = J2 emphasizing the fact that it is equal to the
square of the Jacobian.
Since J > 0 , the tensor g is positive definite,
i.,e., LF ke 0 i=1, 2, 3 . Recalling the last definition
22

in (6), we denote the eigenvalues of C by rather

than u . The interpretation of the Ai is that they are
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the principal values of the stretch tensor U or, simply,

the principal stretches. Rewriting (7) as

2,3

03 -n0%H2+ 0% -1,=0 (8)

3

clearly shows that a knowledge of the three principal
invariants Il' 12, and 13 implies a knowledge of the
three principal stretches Al, AZ' A3 and vice versa.
Thus, either set of quantities can, in principle, be used
to describe the stress-producing aspect of a deformation.
The geometric interpretation of the tensors g ' g
and ? and of the principal stretches are shown, for a
two-dimensional case, in Figure 1. The circular neigh-
borhood, N , surrounding § is shown in Figure la. Three
line elements through § are shown. These are labeled 1,
2 and 3. Lines 1 and 2 are in the principal directions of
the stretch tensor g , while 3 is simply another, arbi-
trarily chosen, line segment. The deformed configuration
of the neighborhood, n , is depicted in Figure 1b. We
note that, in general, all of the line elements in N
have been rotated and stretched (or compressed). This is
the result of the deformation described by (2), and we say
that ? carries N into n . If the diameter of N is
taken as unity, then the lengths of linear segments 1 and
2 in configuration n (Fig. 1b) are Al and 12 . These
are the values of stretch (ratio of deformed to undeformed

length) for those line elements that get stretched the

most and least of all line segments through the point X .
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Figure lc shows the configuration of neighborhood N
that would be produced purely by the stretching part of
F , had no rigid body rotation occurred. If we denote

this n , we say that U carries N into n while R
carries n into n . We note that there is no rotation
of the principal line elements, 1 and 2, produced by ?
and that there are no length changes of any line elements

produced by R .

2.2 Constitutive Equations

We consider only isotropic, incompressible hyper-
elastic materials. For this class of materials, the
stresses are determined, to within a hydrostatic pressure,
from a scalar function called the strain energy density
function or, simply, the energy function. In most of the
published work on rubber elasticity, the energy is written
as a function of the principal invariants as

The Cauchy stress (traction per unit of area in the de-

formed configuration) is, in terms of the function U(Il’

12, 13)
= - 2
g = 2[(0'1 + IlU,2)§ U ,B ] +pI (10)
. 3U
where U,i = 33;
B = FFT
I is the identity
p is the hydrostatic pressure
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In this work, we choose to express the energy func-
tion, not explicitly as a function of the invariants, but,
rather, following Valanis and Landel, as a separable
function of the principal stretches. Thus, we write

U=w(i) +wld,) +w(ry) (11)

The Cauchy stress for an incompressible material for
which (11) holds is given by
3 .

o= 1 A, wir, ot xnl+opr (12)
- i=1 1 kR - -~

In (12), gi is the unit wvector in the direction of
the principal stretch Xi .

For the solution of the equilibrium equations (as
will be seen in section 2.4), we shall need the first and
second derivatives of the energy function with respect to
the invariants. If we were using the form (9), this cal-

culation could be made easily and explicitly, but when

using (11) as our constitutive assumption, we proceed as

follows.
Let
_ 93U _ 2%
U,k = ﬁk and U'kl H ﬁk—a—f; (13)

denote the derivatives of the energy with respect to the
2

three invariants Il' 12 and 13 £ J° . Also, let
aIk azlk
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denote the derivatives of the invariants with respect to
the principal stretches. The derivatives in (14) are

readily calculated from

2 2 2
I1 = Al + Az + x3
_,2,2 2,2 2.2
12 = Alxz + A2A3 + A1A3 (15)
2

[ ]
"
(N
]

>
s
>

and the results can be written concisely as

I;,i = 2 I1,i5 = 2835
I = 21, (I, - A9 2(I, - A2) i#j
2,i it i . _ 1 i
2,ij
4Aixj i=]
(16)
J'i = J/Ai 5 _ 0 i=j
r1] o
J/Aikj i#j

Equating (9) and (11) and differentiating the result
with respect to Ai gives three equations for the
determination of U,k

U

I = w'(li) i=1, 2,3 (17)

,k k'i

We note that for known values of the Ai the coefficients
Ik,i in (17) are evaluated using (16). For a given function
w(A) we obtain the derivative w'(Ai) by the process
de§c;ibed below. Thus, equations (17) are three linear
algebraic equations that are solved for the required

values of U k °
’



15.

The second derivatives U kg are obtained in a way
14
similar to that just described. Differentiating (17) this
time with respect to Aj we obtain

U I +

- [
ke Te,i To,g Uk Ix,ig = W)y
i,5=1, 2, 3 (18)

Equations (18) are six linear algebraic equations for the

determination of the values of U " We note that the
r

I
values of the first derivatives U,k must be found by
solving (17) before equations (18) can be formed.

When two (or three) of the principal stretches are
identical, then (17) and (18) are singular, and special
care must be taken with the degenerate systems. This is
an exceptional situation that almost never occurs in the
solution of boundary value problems. TEXLESP-S contains
adequate provisions to detect and to deal with the
singular cases.

In our implementation, values of the function w'(})
are input at several values of X . A typical curve
defined by these data is in Figure 57 of Peng's report
[9]. Values of w' must be calculated by interpolation
for use in (17) and values of w" must be calculated for
use in (18). The functional values of w' must be smooth
so that w" will be continuous for all values of X or
else the tangént stiffness matrix (see egs. (7) and (10)
in Section 2.4] cannot be calculated. To assure smooth

variation of ' with respect to A , we fit the data
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with cubic splines (using Hermite polynomial interpolating

functions between data points).

2.3 Pinite Element Formulation

The finite element formulation is based on the princi-

ple of virtual work, which is written as

J U av = J feéx 4V + J t+déx ds (19)
2 an
In (19), the notation is defined as follows:
suU is the variation of the energy function with
respect to the current position x
£ is the vector of body force densities
t is the vector of surface tractions
§x is the variation of current position
Q is the interior of the body in the reference
configuration
af is the boundary of the body in the reference
configuration.
We note that the boundary of the body is, in general
composed of a portion, say aﬂt , on which the tractions,
t , are given and a portion, 39x , on which the deformed
position fo the material is given (and on which the
traction is unknown but on which the variation of posi-
tion, 6x , vanishes). Thus, the region of integration of

the surface integral can be taken simply as 3ﬂt .
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Satisfaction of (19) for all suitably smooth é6x
guarantees equilibrium (in a variational or weak sense).
In order that the deformation be isochoric (i.e., that the
incompressibility of the material be satisfied), we must
add to (19) the condition that J - 1 = 0 . This is
accomplished using Lagrange's method of multipliers. The

result is the modified principle of virtual work

J §(u + p(a-1))av = J £ 6xdv + f t-8xds (20)

Q Q MZt

Here, p, the Lagrange multiplier, is the hydrostatic
pressure occurring in the constitutive equation (10). We

rewrite the left-hand member (20) as

j 80 av (21)
Q

and note that the variation is with respect to p as .well
as with respect to x and that the function now depends
on J .

The body is represented by an assemblage of finite
elements. The geometry of each element is defined by the
coordinates of the nodal points connected to it and by a
set of functions called shape functions, denoted by
Na(si) i =1, 2, 3. The parameters s; are called the
parametric coordinates of the material particles contained
in an element and can be thought of as describing the
location of a point in a master element. Typically, the

s; range over a simple interval such as -1 s s 1.,
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In TEXLESP-S, the element library consists of 20 node
bricks, 15 node triangular prisms and 10 node tetrahedra.
The details of these elements can be found in, for
example, the book by Zienciewicz [11] or the TEXGAP3D
reference manual [10]. The shape functions in each type
of element are quadratic functions of the Sy

All integrals in the virtual work statement and its
consequences are evéluated by numerical quadrature
element-by-element. Thus, all calculations required in
the following development are performed at certain fixed
points within an element called integration points. Once
the finite element discretization is made, there are no
longer any functions of position (either known or unknown)
and the only undetermined parameters are the nodal point
values of position, x , and pressure, p .

Explicitly, the reference position of a point, the
deformed position and the pressure at a point are given by

the following

a.a

Xi = N Xi i=1, 2, 3
x, = Nax; a =1, 2, . . . Node (22)
p = MPpf 8 =1, 2, 3, 4

Similarly, the variation of the components of x and of

p are given by
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For convenience in the following, we will let u stand
for the entire set of nodal quantities, including both xi

and pB

where « ranges over all nodes in the model, and
B ranges from 1 to 4 for each element of the model.
Similarly, other quantities with a sub-tilde, e.g., } ’
will denote vectors with a corresponding number of com-
ponents. Double sub-tildes will denote square.matrices of
compatible size.

When the finite element discretizations (22) and (23)
are substituted into the modified principle of virtual

work, the results can be written as

§utT = 6ulF (24)
in which
I = %- f uav
~ Q

F = J f-NAV + j teNds
Q 9Q
The equilibrium equation (24), which is really a vector
equation with one component for each degree of freedom in
the problem, is nonlinear since I = I(u, p) is highly
nonlinear. The solution of this system of equations is

accomplished by means of incremental loading combined with




20.

Newton iteration. As noted in Section 2.1, we consider
proportional loading so that we can write £ = p% and
t = pt for the applied loads. Using these conventions in

(25), we obtain the obvious modification of (24)

-~

I = pF (26)

-

for the equilibrium equations. The incremental loading
procedure consists of proceeding from a value of p at
which (26) is satisfied to an incremented value, say

p + Ap , and attempting to satisfy (26) again. The first
step in this consists of a linearization of (26) about the
current value, i.e.,

3I (u)

T+ aw) = 10a) + —g— au

from which we obtain as the incremental equation

oI (u) -
==~ Au = (p + Ap)g‘ - }(g) (27)

au

This set of linear equations has as its coefficient matrix

the tangent stiffness K defined as

-~

oI

We note that it is the evaluation of this matrix and of
the vector I(u) on the right-hand side of (26) that

requires the bulk of the calculations in TEXLESP-S.
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In the first step of solving for a new load increment
§ and E are evaluated at the previous configuration and
Ehe change in position Ag is found by solving (26).

This solution is accomplished in TEXLESP-S using a frontal
elimination routine. 1In general, the incremented state
91 =u + Ag will not satisfy equilibrium, that is to

say, the residual

Rl = (p + Ap)% - I(ul)

will not be zero. To improve on the solution, we linear-

ize again == this time about the configuration u1 . This

-~

process is

K1du1+1 = Rl
uitl =yl o4 guit?

and is repeated until the correction du becomes less
than some acceptable tolerance.
In practice, the user of TEXLESP-S specifies a

sequence of load factors, say pl ¢ Py 03 ees P_ o, and a

n
tolerance for the convergence of the dg . For each lcad
step, the solution, u, is saved on file. Post-process-
ing, i.e., stress calculation, printing and plotting, can
be done for any converged load step. The solution proce-
dure can be continued by restarting the code and specify-

ing additional load factors.
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The details of the calculation of I and K are

contained in the Appendix.

3.0 TEXLESP-S USERS GUIDE

The finite element code TEXLESP-S solves equilibrium
problems for three-dimensional incompressible hyperelastic
bodies. The constitutive equations are given by specify-
ing the energy function as either a polynomial in the
strain invariants or a separable function of the principal
stretches. In the latter case, the material data are
input as points on the w' versus A curve.

The preprocessing and post-processing functions of
TEXLESP~S have been adapted from the code TEXGAP3D for the
solution of three-dimensional linear elastic problems,
Insofar as possible, the differences between these codes
have been made transparent to the user. That is to say,
all modeling and post-processing data are identical in the
two codes. Only the material property descriptions and
commands directing the solution procedures are different.
Consequently, the TEXGAP3D users manual can be used, ver-
batim, for all descriptions of input formats, mesh genera-
tion commands, element definitions, boundary condition
specifications and post-processing commands.

This users' guide contains an overview of the struc-
ture of the data deck (Section é.l); a description of

those data commands that are different from TEXGAP3D data
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(section 3.2); and a set of example problems which

illustrate the use of the code (Section 3.3).

3.1 Structure of Code and Data Deck

Data deck structures for TEXLESP-S and TEXGAP3D are
essentially the same. 1In each code, there are data
required to

a) set up the model

b) solve the problem

c) post-process the solution.
While these are typically all contained in a TEXGAP3D run,
they may occur in separate runs for TEXLESP-S. Using the
restart capability in TEXLESP-S is often desirable and
requires some understanding of the code structure.

Figure 2 shows a large~-scale flow diagram of
TEXLESP-S. It can be noted that any run begins with the
main routine. From the main routine, control can be
directed to

a) SETUP - to define a model

b) SOLVE - to calculate solutions for various
load increments

c) POST - to calculate print and plot
stresses, strains and/or displacements

d) RESTART - to resume execution of problems

begun on a previous run.
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It will be noted that the file TAPE1l2 is used by all
modules. This file contains all data that describe the
model, i.e., nodal point coordinates, element definitions
and boundary condition specifications, as well as the
solutions calculated at each load step. Data are written
to TAPEl12 by SETUP and by SOLVE. Any run which calls
these modules modifies TAPEl2 and, if subsequent process-
ing of the job is to be performed, the updated version of
this file must be saved.

TAPE18 is a file that contains the material data for
hyperelastic materials whose energy function is written as
a separable function of the principal stretches. These
data are read by TEXLESP-S in the SOLVE and POST modules
but are not modified. This file must be attached to the
job when SOLVE or POST are to be used. The format of
TAPE18 is such that the following statements can be used
to read it.

READ (18,2010)N
READ (18,2020) (ALAM(I), I = 1,N)
READ (18,2020) (WP(I), I = 1,N)

2010 FORMAT (I5)

2020 FORMAT (6F11.3)

The data read by these statements are:

N the number of points on the w' wvs A curve
ALAM(I) values of 1A , in ascending order

WP (I) values of w' .
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Data Deck Structure. The structure of data decks for

TEXLESP-S will vary according to the nature of the job
being processed. In Fiqure 3, we show the most general
structure, i.e., that which is used when a problem is to
be solved in a single run. The data cards that are given
explicitly are similar for all such jobs. Data that are
problem-dependent are not given explicitly in Figure 3.
Figure 4 shows the structure of a data deck that

would be used to continue a previously started solution

and to perform post-processing on it.

3.2 Description of TEXLESP-S Commands

Only those data cards that differ from the corre-
sponding TEXGAP3D data are described here. For complete
descriptions of the other data, see the TEXGAP3D Users'
Manual [10]. The following descriptions explain all data
cards that differ from those of TEXLESP3D.

3.2.1 1Integration control card.

SETINT

This card, which should occur before the SETUP card
changes the default number of integration points from 14
to 8. A significant saving in computer time can be

realized by the use of the SETINT card.
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3.2.2 Material property definiticn cards

RUBBERS, name, no.

This card defines the material, "name," as material
number, "no" and specifies that it is a rubber elastic
material whose energy function is defined by the data on
TAPE18.

Note that only one such material can be used in a

problem.

RUBBER I, name, no, n, C10, CO01, Cc20, Cl1, CO02
c30, Cc21, C12, C03

This card defines material, name, as material number
"no."” The energy function for the material is defined in
terms of the strain invariants in the following way,

depending on the value of n .

e
]
[
(=]
I

C10(Il-3) + C01(I2—3)

1
_ a2 ) ) a2
n=2 U,=uU, +C20(5-3)% + C11(I,~3) (I,=3) + C20(I,-3)
n=3 U.=0U,+ C30(I.-3)° + C21(I.-3)2(T.~3)
3 =0, 1 1 2

2 3
+ C21(Il-3)(12—3) + (C03(Iz-3)

These are the only two material types available in

TEXLESP-~S.
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3.2.3 Grid Generation

The grid generation commands in TEXLESP-S are
identical to those in TEXGAP3D. See Section 2.4 of the
TEXGAP3D Users' Manual for descriptions of these commands.

3.2.4 Element Definition and Boundary Condition

Specification

The element library and element generation commands
are identical in TEXLESP-S and TEXGAP3D except that the
singular WEDGE elements are not used in TEXLESP-S.

All of the boundary condition commands in TEXGAP3D
are available in TEXLESP-S. In addition, a CLAMP command,
described below, has been added to TEXLESP-S.

The element and boundary condition specification
(with the exceptions noted above) are described in Section

2.5 of the TEXGAP3D users' manual.

BC, CLAMP, i, j, k, nside, nset, vx, vy, vz

This boundary condition specifies that all of the
nodes on side, "nside" of element "i, j, k" have specified
displacements. The values of these displacements are vx,
vv and vz in the x, y and 2z directions
respectively. Each different set of wvx, vy, vz is given
a number, "nset," the first time it is used. When a given
set of applied displacements is used subsequently only the
set number (n set) need be repeated. See example data set

1 for use of the CLAMP command.




28.

3.2.5 Solution commands

In TEXGAP3D, the command, SOLVE, has no parameters,
since only a linear solution is produced. In TEXLESP-S,
there are parameters on the SOLVE card that control the

incremental loading and Newton iteration processes.

SOLVE, jprint, iter, tol, Pyr Por P3s eees P

The SOLVE command causes the solution cf the
equilibrium equations to be performed using the sequence
of load factors Pir Por Pyr seey Pp o Each solution is
recorded on TAPEl2. If no previous solutions have been
stored on TAPEl2, then these are the first n solutions.
On the other hand, if a previous run of the problem has
produced solutions and the current run is a RESTART run,
then the sequence of solutions produced is recorded fol-
lowing the solution at which the restart was made. See
example problem 2 for an illustration of this,

The parameter, jprint, controls the amount of print
produced during the solution. Increasing values of jprint
produce increasing amounts of output. A value of 1 pro-
duces the convergence summary table and is recommended.

The maximum number of iterations allowed in a load
step is equal to "iter." The default value, which is 10,

is recommended.
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The parameter, "tol," defines the tolerance to which
the changes in displacement are compared when determining
whether the Newton iterations have converged. The default
value is 10"4 which is small enough for nearly all

purposes. The convergence check determines that
du, < tol * |u,]

for each component of displacement in the model. Here,
ug is the value of the displacement component and dui
is the correction to that displacement produced by the
Newton iteration.

A summary of the convergence tests is printed for
each load step. If the iterations should fail to converge
at any load step, all of the solutions up through the
previous load step are stored on TAPE1l2 so that restarting

can be done from that point.

3.2.6 Post Processing

The post processing in TEXLESP-S uses commands that,
with two exceptions, are the same as those used in
TEXGAP3D. All plotting and stress calculation commands
are as described in Section 2.7 of the TEXGAP3D users'

manual

POST, nstep
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The POST command in TEXLESP-S contains the parameter
"nstep" which specifies the load step number of the

solution to be processed.

REACTION, xmin, ymin, zmin, xmax, ymax, zmax,
imin, jmin, kmin, imax, jmax, kmax

The REACTION command causes the reactions at all
nodes within the specified (x,y,z) bounds and the speci-
fied (i,j,k) bounds to be printed. Either or both sets of
bounds can be omitted. If no bounds are specified, then
all nodes in the model are processed.

The reactions that are printed are actually the un-
balanced nodal point forces (i.e., the difference between
specified applied loads and the calculated internal
forces). When equilibrium is exactly satisfied at a node,
the reactions will be equal to zero, unless the node has
had displacements specified. When displacements are
specified, then the actual reaction furnished by the
support on the model is the calculated value.

The vector sum of all of the reactions in the
specified part of the model is also printed. The REACTION
command is, thus, very useful in determining load-deflec-

tion data.
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3.3 Example Problems

The example problems presented in this section are
intended to illustrate the application of TEXLESP-S in a
typical application. Descriptions of the input data for
several runs associated with the problem are described
below.

The problem to be analyzed is the stretching of a
thin biaxial test specimen with a rail cross section. The
specimen is shown in Figure 5. This is the same specimen
for which results are given in Peng's report [9] (see Fig.
A-2 in [9]1).

The separate runs that are described below are:

Run 1 - Generation and plotting of grid

Run 2 - Analysis of stretching up to 20%

o
]
o]
W
1

Analysis of stretching from 20% to 90%

g
e
>
|

Calculation of reactions

o
=]
o
w
1

Stress calculation and deformed shape
plotting.

It is desirable, althocugh not necessary, to perform
nonlinear analysis in several stages using the restart
capability of TEXLESP-S. The use of several separate runs
allows the user to check intermediate results to make
sure, for example, that the grid is error free and that
convergence of the nonlinear solution is taking place.

For runs 2 through 6, TAPEl12 from the prior runs and

TAPE18 containing material properties are required.
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Run 1: Generation and Plotting of a Grid

The first step in generating a grid for TEXLESP-S is
to sketch the grid and to assign (I, J, K) node numbers.
Figure 6 shows such a sketch of one-eighth of the speci-
men. In this grid, the I, J, K directions are in the x,
Y., 2 directions respectively. Since the elements are
ordered, for solution purposes, by varying I then J
then K it is especially important to let I vary in the
direction of fewest elements (one or two in this case) and
K in the "long" direction (5 elements in this case). It
will be noted that several nodes have been identified on
the sketch.

The data deck for this run is given in Figure 7.
Following the title card, there is a SETINT command
(Section 3.2.1). Then the SETUP command calls the
pre-processing overlay.

The material model in this problem is given by the
w' versus ) data which are contained on TAPE18. The
RUBBERS card specifies this and identifies the material as
material number 1.

The grid generation proceeds by defining all of the
nodes on the plane z = 0 which is also K =1 . FACE,
ARC, POINT and CONNECT commands are used to define these
points. After all of the K =1 points have been
defined, the NORMAL command is used to define other K

planes. After all nodes have been defined, the element
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definition begins. The elements in this problem are
BRICKH and PRISMH elements. The looping features of
TEXLESP-S are used in defining the elements.
The boundary conditions on the one-eighth model are
(a) Symmetry (SLOPE) on the plane y = 0 which is face 5
of elements (1, 1, K).

(b) Symmetry (SLOPE) on the plane x

0 which is face 4

of elements (1, 1, K) and (1, 3, K).

(c) Symmetry (SLOPE) on the plane 2z = 3.75 which is face

3 of elements (1, 1, 9) and (1, 3, 9) and face 4 of

the PRISMH, (3, 3, 9).

(d) All displacements specified (CLAMP) on the plane

y = .75 . This is face 2 of elements (1, 3, K) and

face 1 of the PRISMH elements (3, 3, K). The values

of displacements specified in the CLAMP command

(Section 3.2.4) are u =0, v= .75, w= 0. Note

that this corresponds to a stretch of 100%. This

value would be achieved by a load factor of 1.0.
After the elements and boundary conditions have been
specified, the preprocessing phase is ended.

In order to examine the grid generation results
before attempting an analysis, this run ends with a call
to the post processor to plot the grid. The plot produced
by this call is shown in Figure 8. In addition to the
plot, a large amount of printed output is generated, from

which detailed checking of nodal coordinates, element



eV

34.

connectivities and boundary condition specification can be
done.

The data generated by this run are written on TAPE1l2
so that subsequent runs need not repeat the grid genera-
tion process.

Run 2: Analysis of Stretching Up to 20%

Although final results may be desired only for a
couple of values of stretch, we choose to increment the
load rather slowly at first. This strategy has the
benefit of producing more complete load-deflection data.
More significantly, it is often the case that smaller load
steps are necessary in the early stages of loading in
order to achieve convergence. In the present example, for
instance, a load increment from 0 to 20% will not con-
verge while steps from 15% to 20% as well as from 20% to
40% do converge.

Examination of the load-deflection curve for this
example, Figure 9, indicates a rapid change in behavior
around a stretch of 10%. It is this behavior that is
reflected in the need for initially small load steps.

The data set for this run is shown in Figure 10.

This run requires attachment of TAPEl2 from Run 1 and
TAPE18 containing the material data. The only output from
this run describes the convergence of each load step. The

resulting solutions are accumulated on TAPEl2,
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Run 3: Analysis of Stretching from 20% to 80%

After having determined, from the results of Run 2,
that the solution is converging satisfactorily, this run
is used to continue the solution for subsequent load
steps. Note that the restart card contains the specifica-
tion of the load step beyond which the next SOLVE command
will calculate solutions. TAPE1l2 and TAPEl8 are required.

Run 4: Calculation of Reactions

In this run, the code is restarted and the solutions
at load steps 1, 2 and 3 are post processed. The REACTION
command produces node-by-node reactions for all nodes
within the xyz bounds specified. These are not as useful
as the total resultants that are the sum of these nodal
reactions. The region specified in this run includes the
plane y = .75 but not the plane y =0 . Thus, the vy
reaction printed is the total applied load on one fourth
of the top grip. The total applied load is, of course,
four times this value.

Figure 9 shows the load deflection data plotted by a
separate plotting program.

Run 5: Stress Calculation and Deformed Shape

Plotting

To obtain values of displacement, stress and/or
strain at various locations in the model, the post
processing commands that are common to TEXLESP-S and

TEXGAP3D are used. In this example, we calculate dis-



v

placements, stresses and strains for load step 3. The
data set shown in Figure 10 also produces a deflected

shape plot.

36.
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MAIN

RESTART SETUP SOLVE POST

TAPE 18
Points on

w' vs A
curve

TAPE 12
All data for
model and
solutions

Figure 2. Schematic of TEXLESP-S
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STITLE
SETINT
SETUP
(Material property data cards)
END '
(Nodal point generation data cards)
END
(Element definition and boundary condition data
cards)
END
SOLVE
POST
(Post processing commands)
END

STOP

Figure 3. Data Deck Structure for Complete Run



STITLE
RESTART
SOLVE
POST
(Post processing commands)
END

STOP

Figure 4. Data Deck Structure

for Post Processing Run
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SRUN 1 GRID GENERATION FOR THIN UNCRACKED HRIAXIAL TENSIL

SETINT

SETUR, 1

RUEBERS, 1, 1

END, MAT

FACE=-L,1,1,1,1,3, 3, 1

2, Q, 2, . 2625, @, @, . 2625, . 312,0,@, . 312, @
FQCE-L’ 1; 1, 3, 1’ 3’ 5, b
2,.312,0,.0625,.318, @, . 2685, . 75,2, @, . 75, @
ARC-L,1,3,5,1,5,5,1,,.2625,.75,@,.5,.75,@
POINT, 1,4,4,1,.19@3,.6217,@
POINT,1,4,1,1,.1923,2, @
POINT,1,5,1,1,.5,@, @
CONNECT, 1, 4,1, 1,4, 4, 1

CONNECT, 1,5,1,1,5,5, 1
NORMAL, 2, 1,1,1,%5,5, 1,.25
NORMAL, 6y 1, 1,3, 5,5, 3, 2. 75
NORMAL, 2, 1, 1,9, 5,5, 9, . 75

END, GRID
KLOOP, S, &
JLoos, 8, &
BRICKH, 1, 1, 1
BC, SLOPE, 1, 1
JEND

PRISMH, 1,3,3,1,5,5,1, 3,5, 1

BC, SLOPE, 1,1,1,5

BC, CLAMP, 1,3,1,2,1,@,.75, 2

BC, CLAMP, 3,3, 1,1, 1

KEND

JLaae, 2,2

BC, SLOPE, 1,1, 9, 3

JEND

BC,SL0OPE, 3, 3,9, 4

END, ELEMENTS

POST, BETUP

PLOT, ELEMENTS, ,,—~1,-1,-1,&,8,5
ANGLES, @, @, @

END .
§TOR

) 1
’1|4

Figure 7. Data Deck for Grid Generation Run
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Figure 8.

Grid Plot of FEM
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Figure 9. Load Deflection Curve




SRUN 2 ANALYSIS OF STRETCHING UP TO =2@%
RESTART, SETUP

SOLVE, 1,44.85,.1,.15,.8

STOR

SRUN 3 RANALYSIS OF STRETCHING FROM 2@% TO 8@
RESTART, LRST

SOLVE, 1,,4.3,.6,.8

STOP

$RUN 4 CALCULATION OF REACTIONS
RESTART

POST, 1

REACTION,-1,.7,-1,5,5,5

pPOST, 2

REACTION, =1,.7,.1,5,5,5

POST, 3

REACTION, -1,.7,-1,5,5,5

END

sTOP

$RUN 5 STRESS CALCULATION AND PLOTTING DEFORMED SHARE
RESTART

POST, 3

BLOCK, 3 95=1y=1,=1,2,5,5

OPTION, 2

PLOT, DEFORMED, s =1,=1,=1,1,3,4,6

ANGLES, @, @, @

END

STOP

Figure 10. Data Decks for Restart Runs
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APPENDIX

CALCULATION OF ELEMENT MATRICES

For a Rivlin polynomial material, the contribution of

an element to the internal energy of the body is

e

Q
where the energy has been augmented to include the incom-
pressibility constraint (J-1 = 0). The contribution of
the element to the right-hand side (or load vector) is
=8I . The variation in the energy is obtained by varyving
all the nodal displacement variables in the element (xg)

and the pressure variables (pY). Therefore,

aIk 9J a Y Y
-8 = - {[u, +p 16x; + M' (J-1)ép'}dv
e K g x® 1
9] i i
where
- Ju . =
U,y = 3T, (note: I, denotes J = det (F))

MY

finite element interpolators for the pressure.

The contribution of the element to the tangent stiffness

matrix is d(§I) and is given by

d(sI) = 3% axf + 2L gpn
2%y ap
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2
9I, oI 9 I 2
k L k 3°J a. B
= I {fu, —= 4+ u +p ]6x.dx"
k2 a B 'k a, B a, B i77j
Q¢ axi axj axiax axiaxj
+ Mt 2L Gxgdpn + MY 2L Gdexg}dv .
ax? 1 ax§ J
1 J

The first and second derivatives of the energy density
function (u,k and u'kz) can be obtained explicitly from
the polynomial form of the energy function for Rivilin
materials or as outlined in section 2.2 for materials
defined by a  w' vs. 1 curve.

The invariants are complicated functions of the nodal
point displacements (xg) and derivatives of the invariants
are best obtained by considering the derivatives of the
deformation gradient (?), the left deformation tensor (?)
and using the chain rule. Substituting the finite element
interpolation of the nodal displacements into the defini-

tion of the deformation gradient gives

X
F =__m
mn axn
- ANy
axn m
y
= NY Y Y ; 8N
NDoxo (where N/ = X ) .

The first and second derivatives of F are:




IF
mn _ N“G.

ax? n im
1

2

] an

ax“axB =0
i°%3 -

where Gim is the Kronecker delta function.
The left deformation tensor is defined by

B = F _F .
mn mp np

The first and second derivatives of B are

9B aF oF
a Fmp a an a
3xi axi axi
a
- (Fmp Sin * ansim)Np .
2
3°B
mn_o_ (5. 6., + 6. 6, )NONP
jm in jn im’“p p
a,. B
o9X.9X.
1
= (8. 6, + 6.6, )6 NONP
jm in jn im’ pqpqQ .

50.

The derivatives of the invariants (Il,Iz,J) can now

be determined:

I1 = mann
aI1 e aan
a mn a
axi axi

= 2F, N°




= N;E;i

221, . 2%B__

ax axg mn axzaxg
= 2%i5%pq NpNg
B HinquNg .

The second invariant is more complicated.

2 =
Let (BY) =B B

mr rn
then
il = tr(Bz)
I1 = manrBrn
= er rm °

The derivatives of I, are :

1
31, _ B
o mr [+ 3
axi axi
- [+ ]
- 2er(Fmpair + Frpsim)Np
= 4BlmFmpr
oI 3B, aF
i B = 4[Fmp ;m + Bim ? ]N;
axiaxj 3xj axj
= 4[F__(F, 6. + F_6..) + B, 6. 6 _IN°NP
mp iqg jm mg ji im"jm pqg’ pq
= 4[F, F. + 6..C__ + 1N*N°B

jp iq iji~pa 13 pq P 4a
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FIF is the right deformation tensor.

where C

-

The second invariant is defined by

=12 -3

and its derivatives are:

91

N
]
N} =
~
N
]
]

Q

9X.

(™
[
[

a o
= Il(ZFipr) - 2B, F N

immp p
= 2(F, I, - B, F_ )N
ip~1 im"mp’ p
=2F_ (5. I, - B, )N%
mp  im71 im’ p
a=2
= N B-°,
P pi
2 2 2=
371, -311311+I 3°1, 1 3°I,
a, B g a 1 a. B 2 a. B
axiaxj axj axi axiaxj axiaxj
= [4F + 2I.6, - 2(F. F.
[qup llqu (Jplq
+ 6..C
1Jpq 1Jpq” q
= 2[2F, F. - F. F. + (I,6.. - B,.)$
[1pJq jp 1ig (113 13)
B
-C_6,.1N°N
qujlpq
2 a,B
= HS. NN
ijpa P q

The determlnate of F is defined as

- -~ ~

J = det (F) F11C11 + F12C12 + F13C13

pPq
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~

where Cij

The first derivative of J

3J
X

R

where F !

-

is the cofactor of

is

Fij -

is the inverse of the deformation

gradient.

In order to take the second derivatives of J , it is

necessary to write the first derivatives explicitly.

3
P NJ (Fy F 35
X1
N3 (FyqaF3; -
3J _
5 = Ny (Fy4F5,
ax2
N5 (F1,Fqq =
a — -
Pl N] (F),F g
X3
N3 (F13Fpp =
The second derivatives
2
axiaxj

- F

23F32)
Fy1F33) *+
F12F33)
F13F31)
F13F20)

F11F23)

are:

N3 (Fy Fqy -

+ N2 (F12 31 ~

+ N3(F  Fy, -

F,oF3g)

Fy11F35)

FioF21)
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otherwise,

3°J @ B _ B o B _ 8
.. 8 - N1 (Fa3N; = F3oN3) + N, (F3 N5 - FyqN,)
eX.9X

19%;

a B g
+ N3 (F3,N; - FyyN))

323 o 8 8 o 8 8

> g = Ny (FyoNy = FoaNy) + Ny (Fy Ny - FpyN3)
xlax3

a B _ 8

+ N3 (Fy N, = FyoNg)

223 _ N (F,.N% - F. N%) + NO(F..NB - F._NB)
N 1(Fy3N; = FyoN;, 2(F1N3 13M1

29%3

a 8 _ B
+ N3 (F),N; = Fy M)
323 _ 323 L.
Ta B T Ta.B ¢ 1?7
8xiaxj 8xjaxi
or
2

3°J 3 o B
29 -5, N

a, B ijpg P q
axiaxj
Let R; denote the component of the elemental right-

hand side vector in the ith direction for node o and

R denote the component of the vector corresponding to the

Yth pressure variable. Then, using the expressions for

the derivatives of the invariants

=1 =2 =3 a
i J e[u,lBpi + u’ZBpi + (u’J+p)Bpi]Np dv

o
]

o)
<
|

= - J MY (T - 1) av
Qe
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Similarly, let Kgg denote the component of the tangent
stiffness matrix coupling the degree of freedom in

direction i at node « with the degree-of-freedom in

direction j at node 8 , Kgn denote the component
coupling the nth pressure degree of freedom with the

degree-of-freedom in direction i at node a , and KR

denote the component coupling the yth and nth pressure

degrees of freedom. The stiffness matrix is then

8 k=g k 3 a8
K?‘.=J i, Bo. B, + H;. _ + pH;. IN°N® dv
ij Qe[u ke Bpi Bqj * Uik Hijpg ¥ PPijpq!Tplq &
an _ =3 a
K;" = J eM” Byy Np av

Y]




